Absorption Spectra of FAD Embedded in Cryptochromes
Claus Nielsen, Morten S. Nørby, Jacob Kongsted, Ilia A. Solov'yov
Journal of Physical Chemistry Letters
The magnetic compass sense utilized by migratory birds for long-distancenavigation functions only once light of a certain wavelength is present. This piece ofevidence fits partially with the popular hypothesis of chemical magnetoreception incryptochrome proteins, located in the bird retina. According to this hypothesis a magnetosensitive radical pair is produced after photoexcitation of an FAD cofactor inside cryptochrome, and as such the absorption properties of FAD are of crucial importance for cryptochrome activation. However, we reveal that absorption spectra of FAD show very little variation between six different cryptochromes, suggesting that the electronic transitions are barely affected by the chemical differences in the proteins. This conclusion hints on the presence of a secondary photoreceptor or cofactor that could be necessary to explain green-light-activated magnetoreception in birds.