A marine cryptochrome with an inverse photo-oligomerization mechanism
Hong Ha Vu, Heide Behrmann, Maja Hanić, Gayathri Jeyasankar, Shruthi Krishnan, Dennis Dannecker, Constantin Hammer, Monika Gunkel, Ilia A. Solov'yov, Eva Wolf, Elmar Behrmann
Nature Communication
14
6918
2023
abstract
Cryptochromes (CRYs) are a structurally conserved but functionally diverse family of proteins that canconfer unique sensory properties to organisms. In the marine bristle worm Platynereis dumerilii, its light receptive cryptochrome L-CRY (PdLCry) allows the animal to discriminate between sunlight and moonlight, an important requirement for synchronizing its lunar cycle-dependent mass spawning. Using cryo-electron microscopy, we show that in the dark PdLCry adopts a dimer arrangement observed neither in plant nor insect CRYs. Intense illumination disassembles the dimer into monomers. Structural and functional data suggest a mechanistic coupling between the light-sensing flavin adenine dinucleotide chromophore, the dimer interface, and the C-terminal tail helix, with a likely involvement of the phosphate binding loop. Taken together, our work establishes PdLCry as a CRY protein with inverse photo-oligomerization with respect to plant CRYs, and provides molecular insights into how this protein might help discriminating the different light intensities associated with sunlight and moonlight.