Magnetoreception mechanisms in birds-towards the discovery of the sixth sense
Ilia A. Solov'yov
Ph.D. Thesis, Johann Wolfgang Goethe-University
1 — 203
2008

Frankfurt am Main, Germany

abstract
This work is devoted to the description of mechanisms that might be responsible for avian magnetoreception.Two possible theoretical concepts underlying this phenomenon are formulated and their functionality is proven in realistic geomagnetic fields. It has been suggested that the "magnetic sense" in birds may be mediated by the blue light receptor protein- cryptochrome- which is known to be localized in the retinas of migratory birds. Cryptochromes are a class of photoreceptor signaling proteins that are found in a wide variety of organisms and which primarily perform regulatory functions, such as the entrainment of circadian rhythm in mammals and the inhibition of hypocotyl growth in plants. Recent experiments have shown that the activity of cryptochrome-1 in Arabidopsis thaliana is enhanced by the presence of a weak external magnetic field, confirming the ability of cryptochrome to mediate magnetic field responses. Cryptochrome's signaling is tied to the photoreduction of an internally bound chromophore, flavin adenine dinucleotide (FAD). The spin chemistry of this photoreduction process, which involves electron transfer from a chain of three tryptophans, is modulated by the presence of a magnetic field in an effect known as the radical pair mechanism. Cryptochrome was suggested as a possible magnetoreceptor for the first time in 2000. However, no realistic calculations of the magnetic field effect in cryptochrome were performed. One of the goals of the present thesis is computationally to study the electron spin dynamics in cryptochrome and to show the feasibility of a cryptochrome-based compass in birds. In particular, the activation yield of cryptochrome was studied as a function of an external magnetic field and it was shown that the activation of the protein can be influenced by the geomagnetic field. In the work it has also been proven that cryptochrome provides an inclination compass, which is necessary for bird orientation. The evolution of spin densities as a function of time is also discussed. An alternative mechanism of avian magnetoreception discussed in the thesis is based on the interaction of two iron minerals (magnetite and maghemite) which were only recently found in subcellular compartments within the sensory dendrites of the upper beak of several bird species. The iron minerals in the beak form platelets of crystalline maghemite and assemblies of magnetite nanoparticles (magnetite clusters). The interaction between these particles can be manipulated by an external magnetic field inducing a primary receptor potential via strain-sensitive membrane channels that lead to a certain bird orientation effect. Various properties of the magnetite/maghemite magnetoreceptor system have been considered: the potential energy surface of the magnetite cluster has been calculated and analyzed as a function of the orientation of an external magnetic field; the forces acting on the magnetite cluster were calculated and analyzed; the force differences caused by the change of the direction of external magnetic field were established; the probability of opening the mechanosensitive ion channel was calculated. Finally it has been demonstrated that the iron-mineral based magnetoreceptor provides a polarity magnetic compass. Various conditions at which the magnetoreception process is violated are outlined.