Vision-based animal magnetoreception

Imagine if you had a superpower like sensing Earth's magnetic field! Many creatures, like salmon, sea turtles, lobsters, honeybees, and even fruitflies, actually have this ability. They use it to navigate and find their way around. One fascinating example is migratory birds, such as European robins and silvereyes, who rely on Earth's magnetic field to guide them during their long journeys.

Panoramic view at Frankfurt am Main, Germany

The bird's magnetic compass is like a secret superpower hidden in their eyes. It's not just any light that activates it; they need blue light to sense the magnetic field. This compass can detect changes in the inclination of magnetic field lines. Still, it's not bothered by the polarity of the field lines. Birds are also picky about the strength of the magnetic field, but they can adapt to higher or lower strengths over time.

On the technical side, our team has delved into the mathematical intricacies of understanding the bird's remarkable magnetic sense. We aim to decipher the impact of the magnetic field on what birds perceive through their retinas. Our studies have investigated various factors influencing the efficacy of the "bird compass." We've specifically studied the role of cryptochrome, which could impact the clarity of a bird's magnetic vision. Additionally, we've explored how the patterns seen by birds during day and night flights might affect the utilization of their magnetic compass. Our research has allowed us to step into the captivating realm of a bird's advanced navigation system, unraveling the secrets behind its high-tech capabilities!

Recent Publications

Activation of Cryptochrome 4 from Atlantic Herring, Anders Frederiksen, Mandus Aldag, Ilia A. Solov'yov, Luca Gerhards, Biology, 13, 262-(1-13), (2024)
Simulating spin biology using a digital quantum computer: Prospects on a near-term quantum hardware emulator, Pedro H. Alvarez, Farhan T. Chowdhury, Luke D. Smith, Trevor J. Brokowski, Clarice D. Aiello, Daniel R. Kattnig, Marcos C. de Oliveira, 1, 036114, (2024)
Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night-migratory songbirds, Bo Leberecht, Siu Ying Wong, Baladev Satish, Sara Döge, Jakob Hindman, Lalitha Venkatraman, Shambhavi Apte, Katrin Haase, Isabelle Musielak, Glen Dautaj, Ilia A. Solov'yov, Michael Winklhofer, Henrik Mouritsen, P. J. Hore, Proceedings of the National Academy of Sciences, USA, 120, e2301153120, (2023)
Across atoms to crossing continents: Application of similarity measures to biological location data, Fabian Schuhmann, Leonie Ryvkin, James D. McLaren, Luca Gerhards, Ilia A. Solov'yov, PLoS ONE, 18, e0284736, (2023)
Quantum Effects in Biological Systems, Anders Frederiksen, Thomas Teusch, Ilia A. Solov'yov, in: Dynamics of Systems on the Nanoscale, edited by: Ilia A. Solov'yov and Alexey V. Verkhovtsev and Andrei V. Korol and Andrey V. Solov'yov, 201-248, Springer, (2022)